Home » Umum » PEMBAHASAN SOAL DERET ARITMATIKA

PEMBAHASAN SOAL DERET ARITMATIKA

Posted at June 30th, 2013
Product Description : PEMBAHASAN SOAL DERET ARITMATIKA

Materi Pokok : Barisan dan Deret Aritmetika

  1. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah ….
    840
    660
    640
    630
    315
    Soal Ujian Nasional Tahun 2007
    Diketahui     : U3 = 36, U5 + U7 = 144
    Ditanya    : S10 ?
    Jawab    :
    Un = a + ( n – 1 )b
    U3 = 36
    U3 = a + ( 3 – 1 )b = 36
    U3 = a + 2b = 36     … (1)
    U5 + U7 = 144    { U5 = a + ( 5 – 1 )b }, { U7 = a + ( 7 – 1 )b }
    ( a + 4b ) + ( a + 6b ) = 144
    2a + 10b = 144    … (2)
    Eliminasi kedua persamaan :
    a + 2b = 36     … (1)    | x 2        2a + 4b = 72
    2a + 10b = 144    … (2)    | x 1        2a + 10b = 144 –
    –6b = –72
    b = 12
    Subtitusi nilai b ke salah satu persamaan :
    a + 2b = 36     … (1)
    a + 2(12) = 36
    a = 36 – 24
    a = 12
    Setelah nilai a dan b kita dapatkan baru kita mencari nilai dari S10
    Sn = □(n/2) { 2a + ( n – 1 )b }
    S10 =  □(10/2) { 2(12) + ( 10 – 1 )12 }
    S10 =  5 { 24 + (9)12 }
    S10 =  5 { 24 + 108 }
    S10 =  5 { 132 }
    S10 =  660
  2. Seorang ibu membagikan permen kepada 5 orang anaknya menurut aturan deret aritmetika. Semakin muda usia anak semakin banyak permen yang diperoleh. Jika banyak permen yang diterima anak kedua 11 buah dan anak keempat 19 buah, maka jumlah seluruh permen adalah …buah.
    60
    65
    70
    75
    80
    Soal Ujian Nasional Tahun 2006
    Diketahui     : n = 5, anak kedua = U2 = 11, anak keempat = U4 = 19
    Ditanya     : Jumlah seluruh permen / S5 ?
    Jawab    :
    Un = a + ( n – 1 )b
    U2 = 11
    U2 = a + ( 2 – 1 )b = 11
    U2 = a + b = 11     … (1)
    U4 = 19
    U4 = a + ( 4 – 1 )b = 19
    U4 = a + 3b = 19     … (2)
    Eliminasi kedua persamaan :
    U2 = a + b = 11     … (1)
    U4 = a + 3b = 19     … (2) –
    –2b = –8
    b = 4
    Subtitusi nilai b ke salah satu persamaan :
    a + b = 11     … (1)
    a + 4 = 11
    a = 11 – 4 = 7
    Setelah nilai a dan b kita dapatkan baru kita mencari nilai dari S5
    Sn = □(n/2) { 2a + ( n – 1 )b }
    S5 =  □(5/2) { 2(7) + ( 5 – 1 )4 }
    S5 =  □(5/2) { 14 + (4 )4 }
    S5 =  □(5/2) { 14 + 16 }
    S5 =  □(5/2) { 30 }
    S5 = 75
    Untuk no 3 dan 4 caranya sama dengan no 1 dan 2 ( coba dikerjakan ya ! ^_^ )
  3. Seorang anak menabung di suatu bank dengan selisih kenaikan tabungan antar bulan tetap. Pada bulan pertama sebesar Rp. 50.000,00, bulan kedua Rp.55.000,00, bulan ketiga Rp.60.000,00, dan seterusnya. Besar tabungan anak tersebut selama dua tahun adalah ….
    Rp. 1.315.000,00
    Rp. 1.320.000,00
    Rp. 2.040.000,00
    Rp. 2.580.000,00
    Rp. 2.640.000,00
    Soal Ujian Nasional Tahun 2005 kurikulum 2004
    Dari suatu deret aritmetika diketahui U3 = 13 dan U7 = 29. Jumlah dua puluh lima suku pertama deret tersebut adalah ….
    3.250
    2.650
    1.625
    1.325
    1.225
    Soal Ujian Nasional Tahun 2005
    Suku ke – n suatu deret aritmetika Un = 3n – 5. Rumus jumlah n suku pertama deret tersebut adalah ….
    Sn = n/2 ( 3n – 7 )
    Sn = n/2 ( 3n – 5 )
    Sn = n/2 ( 3n – 4 )
    Sn = n/2 ( 3n – 3 )
    Sn = n/2 ( 3n – 2 )
    Soal Ujian Nasional Tahun 2004
    Diketahui    : Un = 3n – 5
    Ditanya     : Sn ?
    Jawab    :
    Selain dengan aturan Sn = □(n/2) { 2a + ( n – 1 )b } Sn dapat juga dinyatakan dengan
    Sn = □(n/2) { a + Un }         karena Un sudah diketahui maka kita tinggal mencari nilai a / U1
    Un = 3n – 5
    U1 = 3(1) – 5 = –2
    Sn = □(n/2) { a + Un }
    Sn = □(n/2) { –2 + (3n – 5) }
    Sn = □(n/2) {3n – 7 }
  4. Jumlah n buah suku pertama deret aritmetika dinyatakan oleh Sn = n/2 ( 5n – 19 ). Beda deret tersebut adalah ….
    – 5
    – 3
    – 2
    3
    5
    Soal Ujian Nasional Tahun 2004
    Diketahui     : Sn = □(n/2) ( 5n – 19 )
    Ditanya    : b ?
    Jawab    :
    b = Un – Un–1 untuk mencari Un dapat digunakan aturan Un = Sn – Sn–1
    kita ambil saja misalnya untuk n = 3 dan n = 2 sehingga kita dapat U3 = S3 – S2  dan
    U2 = S2 – S1
    Sn = □(n/2) ( 5n – 19 )
    S3 = □(3/2) { 5(3) – 19 }
    S3 = □(3/2) { 15 – 19 }
    S3 = □(3/2) { –4 } = –6
    S2 = □(2/2) { 5(2) – 19 }
    S2 = □(2/2) { 10 – 19 }
    S2 = □(2/2) { –9 } = –9
    S1 = □(1/2) { 5(1) – 19 }
    S1 = □(1/2) { 5 – 19 }
    S1 = □(1/2) { –14 } = –7
    U3 = S3 – S2 = –6 – (–9) = 3
    U2 = S2 – S1 = –9 – (–7) = –2
    b = Un – Un–1 = 3 – (–2) = 5
  5. Empat buah bilangan positif membentuk barisan aritmetika. Jika perkalian bilangan pertama dan keempat adalah 46, dan perkalian bilangan kedua dan ketiga adalah 144, maka jumlah keempat bilangan tersebut adalah ….
    49
    50
    60
    95
    98
    Soal Ujian Nasional Tahun 2002
    Diketahui    : U1 x U4 = 46             U2 x U3 = 144
    Ditanya    : S4 ?
    Jawab    :
    U1 x U4 = 46
    a ( a + 3b ) = 46
    a2 + 3ab = 46 … (1)
    U2 x U3 = 144
    ( a + b ) ( a + 2b ) = 144
    a2 + 2ab + ab + 2b2 = 144
    a2 + 3ab + 2b2 = 144 … (2)
    Substitusi Persamaan (1) ke persamaan (2)
    ( a2 + 3ab ) + 2b2 = 144 … (2)
    46 + 2b2 = 144
    2b2 = 144 – 46
    2b2 = 98
    b2 = 49
    b = ± 7
    Substitusi nilai b ke persamaan (1) atau persamaan (2)
    Pertama substitusi b = 1 ke persamaan (1)
    a2 + 3ab = 46 … (1)
    a2 + 3a(7) – 46 = 0     ( pindahkan 46 ke ruas kiri )
    a2 + 21a – 46 = 0
    ( a + 23 ) ( a – 2 ) = 0
    a + 23 = 0 atau a – 2 = 0
    a = –23 atau a = 2
    Di dalam SOAL di ketahui bahwa ke empat bilangan adalah bilangan positif, maka a yang kita gunakan adalah a = 2, sehingga deret yang terbentuk adalah 2 + 9 + 16 + 23 = 50.
    Untuk no 3 caranya sama dengan no 6 ( coba dikerjakan ya ! ^_^ )
  6. Jumlah n suku pertama deret aritmetika adalah Sn = n2 + 5/2 n. Beda dari deret aritmetika tersebut adalah ….
    – 11/2
    – 2
    2
    5/2
    11/2
    Soal Ujian Nasional Tahun 2001
    Dari deret aritmetika diketahui suku tengah 32. Jika jumlah n suku pertama deret itu 672, banyak suku deret tersebut adalah ….
    17
    19
    21
    23
    25
    Soal Ujian Nasional Tahun 2000
    Diketahui : Ut = 32    Sn = 672
    Ditanya    : n ?
    Jawab    :
    Sn = □(n/2) { a + Un }    ( Catatan Ut = 1/2 { a + Un }, sehingga rumus Un disamping dapat kita ubah menjadi Sn = n x Ut )
    Sn = n x Ut
    672 = n x 32
    n = 672/32 = 21

jual-buku-stan-2014

Untuk membeli buku ini kamu bisa langsung buka web www.bukustan.com

atau klik Gambar dibawah ini

bukustanOK
Tags »

Write your comment about PEMBAHASAN SOAL DERET ARITMATIKA


Related post to PEMBAHASAN SOAL DERET ARITMATIKA

Asyik, Pelamar CPNS Bisa Langsung Tahu Hasilnya Lho

Asyik, Pelamar CPNS Bisa Langsung Tahu Hasilnya Lho

Materi Pokok : Barisan dan Deret Aritmetika Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah... more detail
Daftar Jadi CPNS di Kemenperin Mulai Hari Ini Yuk

Daftar Jadi CPNS di Kemenperin Mulai Hari Ini Yuk

Materi Pokok : Barisan dan Deret Aritmetika Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah... more detail
Kementerian Agama Cari CPNS untuk Jadi Dosen

Kementerian Agama Cari CPNS untuk Jadi Dosen

Materi Pokok : Barisan dan Deret Aritmetika Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah... more detail
Kuota CPNS Bidang Kesehatan & Pendidikan Diprioritaskan

Kuota CPNS Bidang Kesehatan & Pendidikan Diprioritaskan

Materi Pokok : Barisan dan Deret Aritmetika Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah... more detail
Rebut 595 Kursi CPNS di BPN!

Rebut 595 Kursi CPNS di BPN!

Materi Pokok : Barisan dan Deret Aritmetika Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah... more detail